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gcd Greatest common divisor.

inv(X, S) The number of times that the looped schedule S invokes actor or subschedule X.

iterand Given a schedule loop (n Ψ1 Ψ2 … Ψk), we refer to each Ψi as an iterand.

iteration count Given a schedule loop (n Ψ1 Ψ2 … Ψk), we refer to n as the iteration count.

J(S) The blocking factor of the PASS S. Every PASS S invokes each actor N some mul-

tiple of qG(N) times. This multiple is the blocking factor.

looped schedule A schedule that has zero or more parenthesized terms of the form (n Ψ1 Ψ2

… Ψk), where n is a nonnegative integer, and each Ψi represents either an

SDF node or another parenthesized term. (n Ψ1 Ψ2 … Ψk) represents the

successive repetition n times of the firing sequence Ψ1 Ψ2 … Ψk.

max_connected(G) The set of maximal connected subgraphs of the graph SDF G.

N(G) The set of nodes in the SDF graph G.

P(α, i, S) The number of invocations of the source actor of SDF arc α that precede the ith

invocation of sink(α) in schedule S.

PASS A periodic admissable sequential schedule.

p(α) The number of samples produced onto SDF arc α by one invocation of source(α).

periodic schedule A schedule that invokes each actor at least once and produces no net

change in the number of samples buffered on any arc.

qG The repetitions vector qG of the SDF graph G is a vector that is indexed by the

nodes in G. qG has the property that every PASS for G invokes each node N a mul-

tiple of qG(N) times.

single appearance schedule A looped schedule that contains only one appearance of

each actor in the associated SDF graph.

sink(α) The actor at the sink of SDF arc α.

source(α) The actor at the source of SDF arc α.

subgraph A subgraph of an SDF graph G is the graph formed by any subset Z of nodes in G

together with all arcs α in G for which source(α), sink(α) ∈ Z. We denote the sub-

graph corresponding to the subset of nodes Z by subgraph(Z, G), or simply by

subgraph(Z) if G is understood from context.

termination of a schedule If S is not an admissable schedule then some invocation f in S is not

fireable immediately after all of its antecedents in the schedule have

fired. Thus f does not have sufficient data on at least one of its input

arcs. If α is one such input arc, we say that S terminates on α at f.

valid schedule A schedule that is a PASS.
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ing any code duplication across multiple invocations of the same functional block; and (2)

factoring loops in a single appearance schedule to reduce the amount of memory required for

buffering. Based on our technique for constructing single appearance schedules, we have imple-

mented a scheduling framework for synthesizing optimally compact programs for a large class of

applications. This framework defines a way to incorporate other scheduling objectives in a man-

ner that does not conflict with the full code compaction potential offered by subindependent parti-

tions. For example the incorporation of techniques to make buffering more efficient are discussed

in [2].

The trade-offs involved in compiling an SDF program are complex. These tradeoffs

include the effects of parallelization; code compactness; the amount of memory required for buff-

ering; the amount of data transfers that occur only through machine registers; the number of sub-

routine calls and their associated overhead; the amount of context-switch overhead, as [20]

addresses; and the total loop overhead (initiation and indexing). We have only begun to explore

these tradeoffs — the existing techniques focus on a small subset of the full range of consider-

ations. A more global objective of the formal techniques for working with looped schedules that

this paper presents is to facilitate the exploration of tradeoffs involved in compiling SDF pro-

grams. This is demonstrated to some extent by our scheduling framework [2]; there is much more

room for work in this area.
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Glossary

actors(L) The set of actors that appear in the schedule loop L.

admissable schedule A schedule that does not deadlock.

c(α) The number of samples consumed from SDF arc α by one invocation of sink(α).

delay(α) The number of delays on SDF arc α.
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Theorem 5 shows that a strongly connected SDF graph G has a single appearance sched-

ule only if we can find a subindependent partition of the nodes — a partition into two subsets Z1

and Z2 such that Z1 is subindependent of Z2. If we can find such Z1 and Z2, then we can construct

a single appearance schedule for G by constructing a single appearance schedule for all invoca-

tions associated with Z1 and then concatenating a single appearance schedule for all invocations

associated with Z2. By repeatedly applying this decomposition, we can construct single appear-

ance schedules whenever they exist [2].

The partitioning process on which this decomposition method is based can be performed

efficiently. Given a nontrivial strongly connected SDF graph G, we first remove all arcs from G

whose delay is not less than the total number of samples consumed from the arc in a schedule

period. If the resulting graph G' is still strongly connected then no subindependent partition exists.

Otherwise, any root strongly connected component of G' is subindependent. This method of deter-

mining a subindependent partition is illustrated in figure 9.

7 Conclusion

We have formally discussed the organization and manipulation of loops in uniprocessor

schedules for synchronous dataflow programs. We have introduced two main techniques: (1) con-

structing single appearance schedules, which permit the efficiency of inlined code without requir-
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Fig. 9. An example of subindependence partitioning. For the strongly connected SDF
graph on the left, q(A, B, C, D) = 1, 10, 2, 20. Thus the delay on the arc directed from D to
B (25) exceeds the total number of samples consumed by B in a schedule period (20). We
remove this arc to obtain the new graph on the right. Since this graph is not strongly con-
nected, a subindependent partition exists: the root strongly connected component {A, B} is
subindependent of the rest of the graph {C, D}.
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strongly connected component has a single appearance schedule. Theorem 5 gives necessary and

sufficient conditions for a strongly connected SDF graph to have a single appearance schedule.

Theorem 5: Suppose that G is a nontrivial strongly connected SDF graph. Then G has a single

appearance schedule if and only if there exists Ns ⊆ N(G) such that

(1) Ns is subindependent of (N(G) − Ns) in G; and

(2) subgraph(Ns, G) and subgraph(N(G) − Ns, G) both have a single appearance

schedules.

Proof: ⇐ Let S and T denote single appearance schedules for Y ≡ subgraph(Ns, G) and Z ≡

subgraph(N(G) − Ns), G) respectively; let y1, y2, …,yk denote the maximal connected subsets of

N(Y); and let z1, z2, …,zl denote the maximal connected subsets of N(Z). From corollary 1, we can

assume without loss of generality that for 1 ≤ i ≤ k, JS(subgraph(yi)) = qG(yi), and that for 1 ≤ i ≤ l,

JT(subgraph(zi)) = qG(zi). From fact 5, it follows that S invokes each N ∈ Ns qG(N) times, and T

invokes each N ∈ (N(G) − Ns) qG(N) times, and since Ns is subindependent, it follows that (S T)

is a valid single appearance schedule (of blocking factor 1) for G.

⇒ Suppose that S is a single appearance schedule for G. From theorem 4, we can

assume without loss of generality that S has blocking factor 1. Then S can be expressed as SaSb,

where Sa and Sb are nonempty single appearance subschedules of S that are not encompassed by a

loop (if we could represent S as a single loop (n (…) (…) … (…)) then gcd({qG(N)  N ∈ N(G)})

≥ n, so S is not of unity blocking factor — a contradiction). Since Sa Sb is a PASS for G, every

actor N ∈ actors(Sa) is fired qG(N) times before any actor outside of actors(Sa) is invoked. It fol-

lows that actors(Sa) is subindependent of actors(Sb). Also Sa is a single appearance schedule for

subgraph(actors(Sa)) and Sb is a single appearance for subgraph(actors(Sb)). QED.

Fig. 8. An example used to illustrate subindependence.
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Proof1: Clearly, any schedule S of unity blocking factor can be converted into a schedule of arbi-

trary blocking factor j simply by encapsulating S inside a loop of j iterations. Thus, it suffices to

show that G has a single appearance schedule of unity blocking factor. Now, theorem 3 guarantees

that G has a valid fully reduced single appearance schedule, and theorem 2 tells us that this sched-

ule has blocking factor 1. QED.

Corollary  1: Suppose that G is an arbitrary SDF graph that has a valid single appearance sched-

ule. Then G has a valid single appearance schedule for all blocking vectors.

Proof. Suppose S is a valid single appearance schedule for G, let R1, R2, …, Rk denote the maxi-

mal connected subgraphs of N(G), let J*(R1, R2, …, Rk) = (z1, z2, …, zk) be an arbitrary blocking

vector for G, and for 1 ≤ i ≤ k, let Si denote the restriction of S to Ri. Then from fact 4 each Si is a

valid single appearance schedule for the corresponding Ri. From theorem 4, for 1 ≤ i ≤ k, there

exists a valid single appearance schedule Si' of blocking factor zi for Ri. Since the Ri’s are mutually

disjoint and non-adjacent, it follows that S1' S2' … Sk' is a valid single appearance schedule of

blocking vector J* for G. QED.

Our condition for the existence of a single appearance schedule involves a form of prece-

dence independence that we call subindependence.

Definition 9: Suppose that G is a connected SDF graph. If Z1 and Z2 are disjoint subsets of N(G)

we say that “Z1 is subindependent of Z2 in G” if for every arc α in G such that source(α) ∈ Z2

and sink(α) ∈ Z1, we have delay(α) ≥ qG(sink(α))c(α).

For example, consider the SDF graph in figure 8. Here q(A, B, C, D) = (2, 1, 2, 2,), and we

see that {A, D} is subindependent of {B, C} and trivially, {B, C, A} is subindependent of {D}.

We are now ready to establish a recursive condition for the existence of a single appear-

ance schedule. Recall that an arbitrary SDF graph has a single appearance schedule iff each

1.  An alternative proof has been suggested by Sebastian Ritz of Aachen University. This proof is based on the observations that
(1) constructing blocking factor 1 schedules for acyclic graphs is easy — we simply use the process described at the beginning of
this section, and (2) if a strongly connected SDF graph G has a single appearance schedule then it has a subindependent subset of
nodes (see definition 9), which allows us to decompose G into smaller collections of strongly connected components. By hierarchi-
cally scheduling the input graph based on observations (1) and (2), we can always construct a blocking factor 1 schedule.
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Also, observe that if G is an arbitrary SDF graph, then we can cluster the subgraphs asso-

ciated with each nontrivial strongly connected component of G. Clustering a strongly connected

component into a single node never results in deadlock since there can be no directed loop con-

taining the clustered node. Since clustering all strongly connected components yields an acyclic

graph, it follows from fact 4 and fact 6 that G has a valid single appearance schedule if and only

if each strongly connected component has a valid single appearance schedule.

Observe that we must, in general, analyze a strongly connected component R as a separate

entity, since G may have a single appearance schedule even if there is a node N in R for which we

cannot fire all qG(N) invocations in succession.The key is that qR may be less than qG, so we may

be able to generate a single appearance subschedule for R (e.g. we may be able to schedule N

qR(N) times in succession). Since we can schedule G so that R’s subschedule appears only once,

this will translate to a single appearance schedule for G. For example, in figure 7(a), it can be ver-

ified that q(A, B, C) = (10, 4, 5), but we cannot fire so many invocations of A, B, nor C in succes-

sion. However, consider the strongly connected component R* consisting of nodes A and B. Then

we obtain qR*(A) = 5 and qR*(B) = 2, and we immediately see that qR*(B) invocations of B can be

scheduled in succession to obtain a subschedule for R*. The SDF graph that results from cluster-

ing {A, B} into is shown in figure 7(b). This leads to the single appearance schedule

(2(2B)(5A))(5C).

Theorem 4: Suppose that G is a connected SDF graph and suppose that G has a valid single

appearance schedule of some arbitrary blocking factor. Then G has valid single appearance sched-

ules for all blocking factors.
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Fig. 7. An example of how clustering strongly connected components can improve looping.
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(m (n1 Ψ1) (n2 Ψ2) … (nk Ψk)) be any innermost member of nonreduced(S) — i.e. λ1 is reduce-

able, but every loop nested within λ1 is irreducible. From theorem 1, replacing λ1 with λ1' = (γm (γ-

1n1 Ψ1) (γ-1n2 Ψ2) … (γ-1nk Ψk)), where γ = gcd{n1, n2, …, nk}, yields another valid single appear-

ance schedule S1. Furthermore, λ1' is irreducible, and since every loop nested within λ1 is irreduc-

ible, every loop nested within λ1' is irreducible as well. Now let λ2 ∈ nonreduced(S1), and

observe that λ2 cannot equal λ1'. Theorem 1 guarantees a replacement λ2' for λ2 that leads to

another valid single appearance schedule S2. If we continue this process, it is clear that no replace-

ment loop λk' ever replaces one of the previous replacement loops λ1' λ2' … λk-1', since these are

already irreducible. Also, no replacement changes the total number of loops in the schedule. It fol-

lows that we can continue this process only a finite number of times — eventually, we will arrive

at an Sn such that nonreduced(Sn) is empty.

Now if Sn is not a schedule loop we are done. Otherwise, let L denote the outermost loop

in Sn such that 1) all iterands of L are actors, OR 2) L has more than one iterand. If Ψ denotes the

body of L, then Sn is of the form (n1 (n2 … (nk Ψ)) … ). Clearly Sn generates the same firing

sequence as (n1n2 … nk Ψ). From the definition of a PASS, it follows that Ψ is a PASS, and by our

selection of L, Ψ is not a schedule loop. Finally, by our construction of Sn, all schedule loops in Ψ

are irreducible. QED.

6 Constructing Single Appearance Schedules

Since single appearance schedules implement the full repetition inherent in an SDF graph

without requiring subroutines or code duplication, we examine the topological conditions

required for such a schedule to exist. First suppose that G is an acyclic SDF graph containing N

nodes. Then we can take some root node r1 of G and fire all qG(r1) invocations of r1 in succession.

After all invocations of r1 have fired, we can remove r1 from G, pick a root node r2 of the new acy-

clic graph, and schedule its qG(r2) repetitions in succession. Clearly, we can repeat this process

until no nodes are left to obtain the single appearance schedule (qG(r1) r1) (qG(r2) r2) … (qG(rN)

rN) for G. Thus we see that any acyclic SDF graph has a single appearance schedule.
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Theorem 2: Suppose that S is a single appearance schedule for a connected SDF graph G. If S is

fully reduced then S has blocking factor 1.

Proof: First, suppose that not all iterands of S are schedule loops. Then some actor N appears as

an iterand. Since N is not enclosed by a loop in S, and since S is a single appearance schedule,

inv(N, S) = 1, and thus J(S) = 1.

Now suppose that all iterands of S are schedule loops, and suppose that j is an arbitrary

integer that is greater that one. Then since S is fully reduced, j does not divide at least one of the

iteration counts associated with the iterands of S. Define i0 = 1 and let L1 denote one of the iter-

ands of S whose iteration count i1 is not divisible by j = j / gcd(j, i0). Again, since S is fully

reduced, if all iterands of L1 are schedule loops then there exists an iterand L2 of L1 such that j /

gcd(j, i0i1) does not divide the iteration count i2 of L2. Similarly, if all iterands of L2 are schedule

loops, there exists an iterand L3 of L2 whose iteration count i3 is not divisible by j / gcd(j, i0i1i2).

Continuing in this manner, we generate a sequence L1, L2, L3, … such that the iteration

count ik of each Lk is not divisible by j / gcd(j, i0i1ik-1). Since G is of finite size, we cannot continue

this process indefinitely — for some m ≥ 1, not all iterands of Lm are schedule loops. Thus, there

exists an actor N that is an iterand of Lm. Since S is a single appearance schedule,

inv(N, S) = inv(L1, S)inv(L2, L1)inv(L3, L2) … inv(Lm, Lm-1)inv(N, Lm) = i0i1i2 … im.

By our selection of the Lk’s, j / gcd(j, i0i1i2 … im-1) does not divide im, and thus j does not divide

inv(N, S).

We have shown that given any integer j > 1, ∃ N ∈ N(G) such that inv(N, S) is not divisible

by j. It follows that S has blocking factor 1. QED.

Theorem 3: If an SDF graph G has a valid single appearance schedule, then G has a valid fully

reduced schedule.

Proof. We prove theorem 3 by construction. This construction process can easily be automated to

yield an efficient algorithm for synthesizing a fully reduced schedule from an arbitrary valid sin-

gle appearance schedule.

Given a looped schedule Ψ, we define nonreduced(Ψ) to be the set of schedule loops in Ψ

that are reduceable. Now suppose that S is a valid single appearance schedule for G, and let λ1 =
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(γ-1n2 S2) … (γ-1nk' Sk')) (γ-1nk'+1 Sk'+1)) yields another valid schedule Sc. Now Lc yields the same

firing sequence as L' = (γm (γ-1n1 S1) (γ-1n2 S2) … (γ-1nk'+1 Sk'+1)), so replacing Lc with L' in Sc

yields an admissable schedule Sd. But, by our construction, Sd = S', so S' is a valid schedule for G.

We have shown that theorem 1 holds for k = 1 and k = 2, and we have shown that if the

result holds for k ≤ k', then it holds for k ≤ (k' + 1). We conclude that theorem 1 holds for all k.

QED.

5 Reduced Single Appearance Schedules

We begin this section with a definition.

Definition 7: Given a schedule loop L, we say that L is reduceable if all iterands of L are sched-

ule loops, and there exists an integer j > 1 that divides all of the iteration counts of the iterands of

L. If L is not reduceable, we say that L is irreducible.

For example, the schedule loops (3 (4 A) (2 B)) and (10 (7 C)) are both reduceable, while

the loops (5 (3 A) (7 B)) and (70 C) are irreducible. From our discussion in the previous section,

we know that reduceable schedule loops may result in much higher buffering requirements than

their factored counterparts.

Definition 8: Given a single appearance schedule S, we say that S is fully reduced if:

1) S is not a schedule loop; AND

2) Every schedule loop contained in S is irreducible.

In this section, we show that we can always convert a valid single appearance schedule

that is not fully reduced into a valid fully reduced schedule. Thus, we can always avoid the over-

head associated with using reduceable schedule loops over their corresponding factored forms. To

prove this, we use another useful fact: that any fully reduced schedule has blocking factor 1. This

implies that any schedule that has blocking factor greater than one is not fully reduced. Thus, if

we decide to generate a schedule that has nonunity blocking factor, then we risk introducing

higher buffering requirements.
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Case 1: source(θ) ∈ actors(S1), sink(θ) ∈ actors(S2). From EQ 1, we know that prior to

each invocation of (γ-1n2 S2), at least consumed(θ, (γ-1n2 S2)) samples reside on θ. Thus S' never

terminates on θ during an invocation of (γ-1n2 S2). Furthermore, since S' is a single appearance

schedule, sink(θ) is fired only through invocations of (γ-1n2 S2), and it follows that S' does not ter-

minate on θ.

Case 2: source(θ) ∈ actors(S2) and sink(θ) ∈ actors(S1). Since S is an admissable sched-

ule, delay(θ) ≥ consumed(θ, (n1 S1)), otherwise S would terminate on θ during the first invocation

of (n1 S1). Since γ ≥ 1, it follows that delay(θ) ≥ consumed(θ, (γ-1n1 S1)), so S' does not terminate

on θ during the first invocation of (γ-1n1 S1). From EQ 1, we know that prior to each subsequent

invocation of (γ-1n1 S1), at least consumed(θ, (γ-1n1 S1)) samples reside on θ, so S' does not termi-

nate on θ for invocations 2, 3, 4, … of (γ-1n1 S1). We conclude that S' does not terminate on θ.

Case 3: source(θ), sink(θ) ∈ actors(S1). Since S is a valid single appearance schedule, S1

must be a pass for subgraph(actors(S1)). Applying lemma 1 with S0 = S1, we see that S' does not

terminate on θ.

Case 4: source(θ), sink(θ) ∈ actors(S2). From lemma 1 with S0 = S2, S' does not terminate

on θ.

Case 5: source(θ) ∉ (actors(S1) ∪ actors(S2)), or sink(θ) ∉ (actors(S1) ∪ actors(S2)).

Applying lemma 2 with S0 = L and S0' = L', we see that S' does not terminate on θ.

From our conclusions in cases 1-5, S' does not terminate on any arc in θ, and it follows

that S' is a valid schedule. Thus theorem 1 holds for k = 2.

Now suppose that theorem 1 holds whenever k ≤ k', for some k' ≥ 2. We will show that this

implies the validity of theorem 1 for k ≤ k' + 1. For k = k' + 1, L = (m (n1 S1) (n2 S2) … (nk'+1 Sk'+1))

and L' = (γm (γ-1n1 S1) (γ-1n2 S2) … (γ-1nk'+1 Sk'+1)). Let Sa denote the schedule that results from

replacing L with the loop La ≡ (m (1 (n1 S1) (n2 S2) … (nk' Sk')) (nk'+1 Sk'+1)). Since Laand L induce

the same firing sequence, Sa induces the same firing sequence as S. Now theorem 1 for k = k' guar-

antees that replacing (1 (n1 S1) (n2 S2) … (nk' Sk')) with (γ (γ-1n1 S1) (γ-1n2 S2) … (γ-1nk' Sk')) in Sa

results in a valid schedule Sb.

Observe that Sb is the schedule S with L replaced by Lb ≡ (m (γ (γ-1n1 S1) (γ-1n2 S2) … (γ-

1nk' Sk')) (nk'+1 Sk'+1)). Theorem 1 for k = 2 guarantees that replacing Lb with Lc≡ (γm (1 (γ-1n1 S1)
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Theorem 1: Suppose that S is a valid single appearance schedule for G and suppose that L =

(m(n1 S1) (n2 S2) … (nk Sk)) is a schedule loop within S of any nesting depth. Suppose also that γ

is any positive integer that divides n1, n2, …, nk, and let L' denote the loop (γm (γ-1n1 S1) (γ-1n2 S2)

… (γ-1nk Sk)). Then replacing L with L' in S results in a valid schedule for G.

Proof: We will use the following definition in our proof of this theorem.

Definition 6: Given a schedule loop L in S and an arc θ in G, we define consumed(θ, L) to be the

number of samples consumed from θ by sink(θ) during one invocation of L. Similarly, we define

produced(θ, L) to be the number of samples produced onto θ during one invocation of L. Clearly,

if the number of samples on θ is at least consumed(θ, L) just prior to a particular invocation of L,

then S will not terminate on θ during that invocation of L.

We will prove theorem 1 by induction on k. First, observe that for k = 1, L and L' generate

the same firing sequence, and thus S and S' generate the same firing sequence. We conclude that S'

is valid for k = 1.

Now consider the case k = 2. Then L = (m (n1 S1) (n2 S2)) and L' = (γm (γ-1n1 S1) (γ-1n2

S2)). By construction, J(S') = J(S) and S' is also a single appearance schedule. Now Let θ be an arc

in G. If source(θ) ∈ actors(S1) and sink(θ) ∈ actors(S2) then

produced(θ, (γ-1n1 S1)) = J(S)qG(source(θ))p(θ) / inv((γ-1n1 S1), S')

= J(S)qG(source(θ))p(θ) / (γm × inv(L', S'))

= J(S)qG(sink(θ))c(θ) / (γm × inv(L', S')) (by fact 3)

= consumed(θ, (γ-1n2 S2)).

Similarly, if source(θ) ∈ actors(S2) and sink(θ) ∈ actors(S1), produced(θ, (γ-1n2 S2)) =

consumed(θ, (γ-1n1 S1)). Summarizing, we have

source(θ) ∈ actors(S1), sink(θ) ∈ actors(S2)⇒ produced(θ, (γ-1n1 S1)) = consumed(θ, (γ-1n2 S2));

and

source(θ) ∈ actors(S2),sink(θ) ∈ actors(S1)⇒produced(θ, (γ-1n2 S2)) =consumed(θ, (γ-1n1S1)).(EQ 1)

Now we will show that S does not terminate on θ for an arbitrary arc θ in G.
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Before moving to the proof, we emphasize that lemma 2 applies to general looped sched-

ules, not just single appearance schedules.

Proof of lemma 2: Let θ be any arc that is not contained in subgraph(actors(S0), G). Let i

be any invocation number of sink(θ); that is, 1 ≤ i ≤ inv(sink(θ), S'). The sequence of invocations

fired in one period of S can be decomposed into (s1 b1 s2 b2 … bn sn+1), where bj denotes the

sequence of firings associated with the jth invocation of subschedule S0, and sj is the sequence of

firings between the (j −1)th and jth invocations of S0. Since S' is derived by rearranging the firings

in S0, we can express it similarly as (s1 b1' s2 b2' … bn' sn+1), where bj' corresponds to the jth invo-

cation of S0' in S'.

If neither source(θ) nor sink(θ) is contained in actors(S0), then none of the bj’s nor any of

the bj'’s contain any occurrences of sink(θ) or source(θ). Thus P(θ, i, S) = P(θ, i, s1 s2 … sn+1) =

P(θ, i, S').

Now suppose source(θ) ∈ actors(S0) and sink(θ) ∉ actors(S0). Let k denote the number of

invocations of S0 that precede sink(θ)i in S. Then, since inv(sink(θ), bj) = inv(sink(θ), bj') = 0 ∀ j,

we have that k invocations of S0' precede sink(θ) in S'. It follows that P(θ, i, S) = P(θ, i, s1 s2 …

sn+1) + k × inv(source(θ), S0), and P(θ, i, S') = P(θ, i, s1 s2 … sn+1) + k × inv(source(θ), S0'). But, by

assumption, inv(source(θ), S0) = inv(source(θ), S0'), so P(θ, i, S) = P(θ, i, S').

Finally, suppose source(θ) ∉ actors(S0) and sink(θ) ∈ actors(S0). There are two sub-cases

to consider here: (1) In S, sink(θ)i occurs in one of the sj’s, say sk. Since inv(sink(θ), S0) = inv(-

sink(θ), S0'), it follows that in S', sink(θ)i occurs in sk as well. Since source(θ) ∉ actors(S0), we

have P(θ, i, S) = P(θ, i −(k − 1)inv(sink(θ), S0), s1 s2 … sk) = P(θ, i −(k − 1)inv(sink(θ), S0'), s1 s2

… sk) = P(θ, i, S'). (2) In S, sink(θ)i occurs in one of the bj's, say bm. Then inv(sink(θ), S0) = inv(-

sink(θ), S0') implies that in S', sink(θ) occurs in bm'. Since source(θ) ∉ actors(S0), P(θ, i S) = inv(-

source(θ), s1 s2 … sm) = P(θ, i, S').

Thus, for arbitrary i, P(θ, i, S) = P(θ, i, S') From the admissability of S, it follows that S'

does not terminate on θ. QED.

The following theorem establishes the validity of our factoring transformation.
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Definition 5: Given a schedule S0, we denote the set of actors that appear in S0 by actors(S0). For

example, actors((2(2B)(5A))) = {Α, Β} and actors((3 X (2Y(3Z)X))) = {X, Y, Z}.

Lemma 1: Suppose that S is a single appearance schedule (that is not necessarily a PASS) for the

SDF graph G, and S0 is a subschedule in S such that S0 is a PASS for subgraph(actors(S0), G).

Then S does not terminate on any arc θ for which source(θ), sink(θ) ∈ actors(S0).

For example, suppose that S is the schedule D(2 A(2 BC))E for the SDF graph in figure 6,

and S0 is the subschedule (2 A(2 BC)). Lemma 1 guarantees that S does not terminate on any arc

that is contained in subgraph({ABC}): No matter what the values of the delays {di} are, S does

not terminate on the arc from A to B, nor the arc from A to C.

Proof of lemma 1: Since S is a single appearance schedule, source(θ) and sink(θ) are invoked only

through invocations of S0. Since S0 is admissable, the number of samples on θ prior to each invo-

cation of sink(θ) is at least c(θ). Thus S does not terminate on θ. QED.

Lemma 2: Suppose that G is an SDF graph, S is an admissable looped schedule for G, and S0 is a

subschedule in S. Suppose also that S0' is any looped schedule such that actors(S0') = actors(S0),

and inv(N, S0) = inv(N, S0') ∀ N ∈ actors(S0). Let S' denote the schedule obtained by replacing S0

with S0' in S. Then S' does not terminate on any arc θ that is not contained subgraph(actors(S0),

G); equivalently, (source(θ) ∉ actors(S0) or sink(θ) ∉ actors(S0)) ⇒ S' does not terminate on θ.

Again consider the example in figure 6 and suppose that D(2 A(2 BC))E is an admissable

schedule for this SDF graph. Then lemma 2 (with S0 = A(2 BC), and S0' = BCABC) tells us that

D(2 BCABC)E does not terminate on any of the four arcs that lie outside of subgraph({A, B, C}).

AD E

B C

22

11

d1D d2D

1

4

d3D

21 d4D

1

4

d5D

2 1d6D

Fig. 6. An example used to illustrate the application lemmas 1 and 2. Each di represents the
number of delays on the corresponding arc. Here q(A, B, C, D, E) = (2, 4, 4, 1, 1).
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For example, consider the SDF graph in figure 5. One single appearance schedule for this

graph is (100 A) (100 B) (10 C) D. With this schedule, prior to each invocation of C, 100 tokens

are queued on each of C’s input arcs, and a maximum of 10 tokens are queued on D’s input arc.

Thus 210 words of memory are required to implement the buffering for this schedule.

Now observe that this schedule induces the same firing sequence as (1 (100 A) (100 B) (10

C)) D. The result developed in this section allows us to factor the common divisor of 10 in the

iteration counts of the three inner loops into the iteration count of the outer loop. This yields the

new single appearance schedule (10 (10 A) (10 B) C) D, for which at most ten tokens simulta-

neously reside on each arc. Thus this factoring application has reduced the buffering requirement

by a factor of 7.

There is, however a trade-off involved in factoring, For example, the schedule (100 A)

(100 B) (10 C) D requires 3 loop initiations per schedule period, while the factored schedule (10

(10 A) (10 B) C) D requires 21. Thus the runtime cost of starting loops — usually, initializing the

loop indices — has increased by the same factor by which the buffering cost has decreased. How-

ever the loop-startup overhead is normally much smaller than the penalty that is paid when the

memory requirement exceeds the on-chip limits. Unfortunately, we cannot in general perform the

reverse of the factoring transformation — i.e. moving a factor of the outer loop’s iteration count

into the inner loops. This reverse transformation would desirable in situations where minimizing

buffering requirements is not critical.

In this section, we prove the validity of factoring for an arbitrary “factorable” loop in a

single appearance schedule.

B

A

C D

1
10

1
10

1 10

Fig. 5. An SDF graph used to illustrate the factoring of loops. For this graph, q(A, B, C, D) = (100,
100, 10, 1).
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Now suppose that source(θ) ∈ N(R), and sink(θ) ∉ N(R). Then corresponding to θ, there is

an arc θ' in G', such that source(θ') =Ω, sink(θ') = sink(θ), p(θ') = qR/G(source(θ))p(θ), and c(θ') =

c(θ). Now each invocation of SR produces inv(source(θ), SR)p(θ) = qR/G(source(θ))p(θ) = p(θ')

samples onto θ. Since c(θ') = c(θ) and S' is a PASS, it follows that ∆(θ, S*) = 0 and S* does not ter-

minate on θ.

Similarly, if source(θ) ∉ N(R), and sink(θ) ∈ N(R), we see that each invocation of SR con-

sumes the same number of samples from θ as Ω consumes from the corresponding arc in G', and

thus ∆(θ, S*) = 0 and S* does not terminate on θ.

We conclude that S* does not terminate on any arc in G, and ∆(α, S*) = 0 for all arcs α in G.

Thus S* is a PASS for G. QED.

We conclude this section with a fact that relates the repetition vector of an SDF graph

obtained by clustering a subgraph to the repetitions vector of the original graph.

Fact 7: If G is a connected SDF graph, Z ⊆ N(G), and G' is the SDF graph obtained from G by

clustering subgraph(Z) into the node Ω, then €qG'(Ω) = qG(Z), and ∀ N ∉ Z, qG'(N) = qG(N).

Proof. Let q' denote the vector that we claim is the repetitions vector for G'. It can easily be veri-

fied that q' satisfies the balance equations (defined in fact 3) for G'. Furthermore, from fact 1, no

positive integer can divide all members of ({qG(N) | N ∉ Z} ∪ {gcd({qG(N) | N ∈ Z})}). Since

qG(Z) = gcd{qG(N) | N ∈ Z}, it follows that the components of q' are collectively coprime. From

fact 3, we conclude that q' = qG'. QED.

4 Factoring Schedule Loops

In this section, we show that in a single appearance schedule, we can “factor” common

terms from the iteration counts of inner loops into the iteration count of the enclosing loop. An

important practical advantage of factoring is that it may significantly reduce the amount of mem-

ory required for buffering.
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Finally, we formalize the concept of clustering a subgraph of a connected SDF graph G,

which as we discussed above, is used to organize hierarchy for scheduling purposes. This process

is illustrated in figure 4. Here subgraph({A, B, D, E}) of figure 4(a) is clustered into the hierarchi-

cal node Ω, and the resulting SDF graph is shown in figure 4(b). Each input arc α to a clustered

subgraph R is replaced by an arc α' having p(α') = p(α), and c(α') = c(α) × qR/G(sink(α)), the num-

ber of samples consumed from α in one invocation of R as a subgraph of G. Similarly we replace

each output arc β with β' such that c(β') = c(β), and p(β') = p(β) × qR/G(source(β)). We will use the

following property of clustered subgraphs.

Fact 6: Suppose G is an SDF graph, R is a subgraph of G, G' is the SDF graph that results from

clustering R into the hierarchical node Ω, S' is a PASS for G', and SR is a PASS for R such that ∀

N ∈ N(R), inv(N, SR) = qR/G(N). Let S* denote the schedule that results from replacing each

appearance of Ω in S with SR. Then S* is a PASS for G.

As a simple example, consider figure 4 again. Now, (2 Ω) C is a PASS for the SDF graph

in figure 4(b), and S ≡ AB (2 DE) is a PASS for R ≡ subgraph({A, B, D, E}) such that inv(N, S) =

qR/G(N) ∀ N. Thus, fact 6 guarantees that (2 AB (2 DE))C is a PASS for figure 4(a).

Proof of fact 6. Given a schedule σ and an SDF arc α, we define

∆(α, σ) = inv(source(α), σ) × p(α) − inv(sink(α), σ) × c(α).

Clearly σ is a periodic schedule only if ∆(α, σ) = 0 ∀ α.

We can decompose S' into s1 Ω s2 Ω … Ω sk, where each sj denotes the sequence of firings

between the (j − 1)th and jth invocations of Ω. Then S* = s1 SR s2 SR … SR sk.

First, suppose that θ is an arc in G such that source(θ), sink(θ) ∉ N(R). Then SR contains

no occurrences of source(θ) nor sink(θ), so P(θ, i, S*) = P(θ, i, S') for any invocation number i of

sink(θ). Thus, since S' is admissable, S* does not terminate on θ. Also, ∆(θ, S*) = ∆(θ, s1 s2 … sk) =

∆(θ, S') = 0, since S' is periodic.

If source(θ), sink(θ) ∈ N(R), then none of the sj’s contain any occurrences of source(θ) or

sink(θ). Thus for any i, P(θ, i, S*) = P(θ, i, S**) and ∆(θ, S*) = ∆(θ, S**), where S** = SR SR … SR

denotes S* with all of the sj’s removed. Since S** consists of successive invocations of a PASS, it

follows that S* does not terminate on θ, and ∆(θ, S*) = 0.
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never lead to a periodic schedule for the enclosing SDF graph. We have motivated the following

definition.

Definition 4: Let G be a  connected SDF graph, suppose that Z is a subset of N(G), and let R =

subgraph(Z). We define qG(Z) ≡ gcd(qG(N) | N ∈ Z), and we define qR/G to be the vector of posi-

tive integers indexed by the members of Z that is defined by qR/G(N) = qG(N) / qG(Z), ∀ N ∈ Z.

qG(Z) can be viewed as the number of times a minimal periodic schedule for G invokes the sub-

graph R, and we refer to qR/G as the repetitions vector of R as a subgraph of G. For example, in

figure 4, if R = subgraph({A, B, D, E}), then qG(N(R)) = 2, and qR/G = qR/G(A, B, D, E) = (1, 1, 2,

2).

Fact 5: If G is a connected SDF graph and R is a connected subgraph of G, then qR/G = qR. Thus

for a connected subgraph R, ∀ N ∈ N(R), qG(N) = qG(N(R))qR(N).

Proof. Let S be any PASS for G of unit blocking factor, and let S' = restriction(S, R). Then

from fact 4, for all N ∈ N(R), we have qG(N) = J(S')qR(N). But from fact 1, we know that the

components of qR are coprime. It follows that J(S') = gcd{qG(N') | N' ∈ N(R)} = qG(N(R)). Thus,

∀ N ∈ N(R), qR(N) = qG(N) / qG(N(R)) = qR/G(N). QED.

For example, in figure 4(a), let R = subgraph({A, B}). We have qG(A, B, C, D, E) = (2, 2,

1, 4, 4), qR(A, B) = (1, 1), and from definition 4, qG(N(R)) = gcd(2, 2) = 2, and qR/G = (2, 2) / 2 =

(1, 1). As fact 4 assures us, qR = qR/G.

A B
1

D E

C

11

1 1

2

1

4

Fig. 4. An example of clustering a subgraph in an SDF graph.

Ω C

2

1 2

4

(a) (b)



Non-connected SDF Graphs

9 of 28

ple, but this schedule corresponds to a blocking factor of 1 for subgraph({A, B}) and a blocking

factor of 2 for subgraph({C, D}) — there is no single scalar blocking factor associated with A(2

C) B (2 D).

Now suppose that S is a PASS for an arbitrary SDF graph G. By fact 4, for each C ∈

max_connected(G), we have that restriciton(S, C) is a PASS for C. Thus, associated with S, there

is a vector of positive integers JS, indexed by the maximal connected subgraphs of G, such that ∀

C ∈ max_connected(G), ∀ N ∈ N(C), inv(N, S) = JS(C)qC(N). We call JS the blocking vector of

S. For example, if S = A (2 C) B (2 D) for figure 3, then JS(subgraph({A, B})) = 1, and JS(sub-

graph({C, D})) = 2. On the other hand, if G is connected, then JS has only one component, which

is the blocking factor of S, J(S).

It is often convenient to view parts of an SDF graph as subsystems that are invoked as sin-

gle units. The invocation of a subsystem corresponds to invoking a minimal periodic schedule for

the associated subgraph. If this subgraph is connected, its repetitions vector gives the minimum

number of invocations required for a periodic schedule. However, if the subgraph is not con-

nected, then the minimum number of invocations involved in a periodic schedule is not necessar-

ily obtained by concatenating the repetitions vectors of the maximal connected subcomponents.

For example, consider the subsystem subgraph({A, B, D, E}) in the SDF graph of figure

4(a). It is easily verified that q(A, B, C, D, E) = (2, 2, 1, 4, 4). Thus, for a periodic schedule, the

actors in subgraph({D, E}) must execute twice as frequently as those in subgraph({A, B}). We

see that the minimal repetition rates for subgraph({A, B, D, E}) as a subgraph of the original

graph are given by ρ(A, B, D, E) = (1, 1, 2, 2), which can be obtained dividing each corresponding

entry in q by gcd(q(A), q(B), q(D), q(E)) = gcd(2, 2, 4, 4) = 21. On the other hand, concatenating

the repetitions vectors of subgraph({A, B}) and subgraph({D, E}) yields the repetition rates ρ'(A,

B, D, E) = (1, 1, 1, 1). However, repeatedly invoking the subsystem with these relative rates can

1. gcd denotes the greatest common divisor.

A B
1 1

C D
1 1

Fig. 3. A simple non-connected SDF graph
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M that properly contains Ms induces a connected subgraph in G. Every subset of nodes in an SDF

graph has a unique partition into one or more maximal connected subsets. For example in figure 2,

the subset of nodes {A, B, C, E, G, H} has three maximal connected subsets: {A, H}, {B, E, C}

and {G}. If Ms is a maximal connected subset of N(G), then we say that subgraph(Ms, G) is a

maximal connected subgraph of G. We denote the set of maximal connected subgraphs in G by

max_connected(G). Thus, for figure 3, max_connected(G) = {subgraph({A, B}), subgraph({C,

D})}.

Definition 3: Suppose that S is a looped schedule for an SDF graph and Ns ⊆ N(G). If we remove

from S all actors that are not in Ns, and remove all empty loops — schedule loops that contain no

actors in their bodies — that result, we obtain another looped schedule, which we call the restric-

tion of S to Ns, and which we denote by restriction(S, Ns). For example, restriction((2(2B)(5A)),

{A, C}) = (2(5 A)), and restriction((5 C), {A, B}) is the null schedule. If Gs is a subgraph of G,

then we define restriction(S, Gs) ≡ restriction(S, N(Gs)).

The following fact follows immediately from definition 3 and the definition of a PASS.

Fact 4: If S is a PASS for an SDF graph G and Gs is a subgraph of G, then restriction(S, Gs) is a

PASS for Gs.

The concept of blocking factor does not apply directly to SDF graphs that are not con-

nected. For example, in figure 3 the minimal vector of repetitions for a periodic schedule is given

by q(A, B, C, D) = (1, 1, 1, 1). The schedule A (2 C) B (2 D) is a periodic schedule for this exam-

D

A B C G

I H E

F

Fig. 2. An example used to illustrate maximally connected subsets. The direction and the
SDF parameters for each arc are not shown because they are not relevant to connected-
ness.
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in S as a subschedule of S. For example, the schedules B(3AB)C and (2B(3AB)C)A are both

subschedules of A(2B(3AB)C)A(2B), whereas (3AB)CA is not. By this definition, every schedule

loop in S is a subschedule of S. If the same firing sequence appears in more than one place in a

schedule, we distinguish each instance as a separate subschedule. For example, in

(3A(2BC)D(2BC)), “(2BC)” appears twice, and these correspond to two distinct subschedules. In

this case, the content of a subschedule is not sufficient to specify it — we must also specify the

lexical position, as in “the second appearance of (2BC)”.

Given a looped schedule S and an actor N that appears in S, we define inv(N, S) to be the

number of times that S invokes N. Similarly, if S0 is a subschedule, we define inv(S0, S) to be the

number of times that S invokes S0. For example, if S = A(2(3BA)C)BA(2B), then inv(B, S) = 9,

inv((3BA), S) = 2, and inv(first appearance of BA, S) = 6. Also, we refer to the schedule that a

looped schedule S represents as the firing sequence generated by S. For example, the firing

sequence generated by A(2(3BA)C)BA(2B) is ABABABACBABABACBABB. When there is no

ambiguity, we occasionally do not distinguish between a looped schedule and the firing sequence

that it generates.

Finally, given an SDF graph G, an arc α in G, a looped schedule S for G, and a nonnega-

tive integer i, we define P(α, i, S) to denote the number of firings of source(α) that precede the ith

invocation of sink(α) in S. For example, consider the SDF graph in figure 1 and let α denote the

arc from B to C. Then P(α, 2, A(2 BC)) = 2, the number of firings of B that precede invocation C2

in the firing sequence ABCBC.

3 Non-connected SDF Graphs

The fundamentals of SDF were introduced in terms of connected SDF graphs [13, 15]. In

this section, we extend some basic principles of SDF to non-connected SDF graphs. We begin

with two definitions.

Definition 2: Suppose that G is an SDF graph, M is any subset of nodes in G, and Ms ⊆ M. We

say that Ms is a maximal connected subset of M if subgraph(Ms, G) is connected, and no subset of
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Fact 2:  Suppose that G is a connected SDF graph and S is an admissable schedule for G. If there

is a positive integer J0 such that S invokes each N ∈ N(G) exactly J0q(N) times, then S is a PASS.

Fact 3: The balance equation q(source(α)) × p(α) = q(sink(α)) × c(α) is satisfied for each arc α in

G. Also, any positive-integer vector that satisfies the balance equations is a positive-integer multi-

ple of the repetitions vector.

Given an SDF graph G, we say that G is strongly connected if for any pair of distinct

nodes A, B in G, there is a directed path from A to B and a directed path from B to A. We say that

a strongly connected SDF graph is nontrivial if it contains more than one node. Also, we say that

a subset Z of nodes in G is strongly connected if subgraph(Z, G) is strongly connected. Finally, a

strongly connected component of G is a strongly connected subset of N(G) such that no strongly

connected subset of N(G) properly contains Z.

Although there is no theoretical impediment to infinite SDF graphs, we currently do not

have any practical use for them, so in this paper, we deal only with SDF graphs that have a finite

number of nodes and arcs. Also, unless otherwise stated, we deal only with SDF graphs for which

a PASS exists.

2.2 Looped Schedule Terminology

Definition 1: A schedule loop is a parenthesized term of the form (n T1 T2 … Tm), where n is a

positive integer and each Ti represents an SDF node or another schedule loop. (n T1 T2 … Tm) rep-

resents the successive repetition n times of the firing sequence T1 T2 … Tm. If L = (n T1 T2 … Tm)

is a schedule loop, we say that n is the iteration count of L, each Ti is an iterand of L, and T1 T2 …

Tm constitutes the body of L. A looped schedule is a sequence V1 V2 … Vk, where each Vi is

either an actor or a schedule loop. Since a looped schedule is usually executed repeatedly, we

refer to each Vi as an iterand of the associated looped schedule.

When referring to a looped schedule, we often omit the “looped” qualification if it is

understood from context; similarly, we may refer to a schedule loop simply as a “loop”. Given a

looped schedule S, we refer to any contiguous sequence of actor appearances and schedule loops
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We can think of each arc in G as having a FIFO queue that buffers the tokens that pass

through the arc. Each FIFO contains an initial number of samples equal to the delay on the associ-

ated arc. Firing a node in G corresponds to removing c(α) tokens from the head of the FIFO for

each input arc α, and appending p(β) tokens to the FIFO for each output arc β. After a sequence of

0 or more firings, we say that a node is fireable if there are enough tokens on each input FIFO to

fire the node. An admissable sequential schedule (“sequential” is used to distinguish this type of

schedule from a parallel schedule) for G is a finite sequence S = S1 S2 … SN of nodes in G such

that each Si is fireable immediately after S1, S2, …, Si-1 have fired in succession.

If some Si is not fireable immediately after its antecedents have fired, then there is least

one arc α such that (1) sink(α) = Si, and (2) the FIFO associated with sink(α) contains less than

c(α) just prior to the ith firing in S. For each such α, we say that S terminates on α at firing Si.

Clearly then, S is admissable if and only if it does not terminate on any arc α.

We say that a sequential schedule S is a periodic schedule if it invokes each node at least

once and produces no net change in the number of tokens on a FIFO — for each arc α, (the num-

ber of times source(α) is fired in S) × p(α) = (the number of times sink(α) is fired in S) × c(α). A

periodic admissable sequential schedule (PASS) is a schedule that is both periodic and admiss-

able. We will also use the term valid schedule to describe a schedule that is a PASS. For a given

sequential schedule, we denote the ith firing, or invocation, of actor N by Ni, and we call i the

invocation number of Ni.

In [14], it is shown that for each connected SDF graph G, there is a unique minimum num-

ber of times that each node needs to be invoked in a periodic schedule. We specify these minimum

numbers of firings by a vector of positive integers qG, which is indexed by the nodes in G, and we

denote the component of qG corresponding to a node N by qG(N). Every PASS for G invokes each

node N a multiple of qG(N) times, and corresponding to each PASS S, there is a positive integer

J(S) called the blocking factor of S, such that S invokes each N ∈ N(G) exactly JqG(N) times. We

call qG the repetitions vector of G. If G is understood from context, we may refer to qG simply as

q. The following properties of repetitions vectors are established in [14]:

Fact 1: The components of a repetitions vector are collectively coprime.
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impede code size minimization goals. We have applied conditions for the existence of a single

appearance schedule to define our scheduling framework. Due to space limitations, we do not

elaborate further on this scheduling framework in this paper; instead, we refer the reader to [2].

We begin with a review of the SDF model of computation and the terminology associated

with looped schedules for SDF graphs. SDF principles were introduced [13] in terms of connected

graphs. However, for developing scheduling algorithms it is useful to consider non-connected

graphs as well, so in section 3 we extend SDF principles to non-connected SDF graphs. In sec-

tions 4 and 5, we discuss a schedule transformation called factoring, which can produce large

reductions in the amount of memory required for buffering. Finally, in section 6, we develop con-

ditions for the existence of a single appearance schedule, and we discuss the application of these

conditions to synthesizing single appearance schedules whenever they exist. The sections form a

linear dependence chain — each section depends on the previous ones. For reference, a summary

of terminology and notation can be found in the glossary at the end of the paper.

2 Background

2.1 Synchronous Dataflow

An SDF program is normally translated into a loop, where each iteration of the loop exe-

cutes one cycle of a periodic schedule for the graph. In this section we summarize important prop-

erties of periodic schedules.

For an SDF graph G, we denote the set of nodes in G by N(G) and the set of arcs in G by

A(G). For an SDF arc α, we let source(α) and sink(α) denote the nodes at the source and sink of α;

we let p(α) denote the number of samples produced by source(α), c(α) denote the number of sam-

ples consumed by sink(α), and we denote the delay on α by delay(α).We define a subgraph of G

to be that SDF graph formed by any Z ⊆ N(G) together with the set of arcs {α ∈ A(G) | source(α),

sink(α) ∈ Z}. We denote the subgraph associated with the subset of nodes Z by subgraph(Z, G); if

G is understood, we may simply write subgraph(Z).
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loop. For the graph in figure 1, for example, the looped schedule A(2 BC) specifies the firing

sequence ABCBC. Using this notation, we can define an optimally-compact looped schedule as

one that contains only one appearance of each actor in the SDF graph. We call such an “optimal”

looped schedule a single appearance schedule. For example the looped schedule CA(2B)C for

figure 1 is not a single appearance schedule since C appears twice. Thus, either C must be imple-

mented with a subroutine, or we must insert two versions of C’s code block into the synthesized

code. In the schedule A(2CB) however, no actor appears more than once, so it is a single appear-

ance schedule; thus it allows in-line code generation without a code-size penalty.

Our observations suggest that we can construct single appearance schedules for most prac-

tical SDF graphs [2]. In this paper, we formally develop transformations that can be applied to

single appearance schedules to improve the efficiency of the target code. We also determine nec-

essary and sufficient conditions for an SDF graph to have a single appearance schedule. These

conditions were developed independently, in a different form, by Ritz et al. [20], although their

application of the condition is quite different to ours. Ritz et al. discuss single appearance sched-

ules in the context of minimum activation schedules, which minimize the number of “context-

switches” between actors. For example, in the looped schedule A(2 CB) for figure 1, the invoca-

tions of B and C are interleaved, and thus a separate activation is required for each invocation —

5 total activations are required. On the other hand, the schedule A(2 B)(2 C) requires only three

activations, one for each actor. In the objectives of [20], the latter schedule is preferable, because

in that code-generation framework, there is a large overhead involved with each activation. With

effective register allocation and instruction scheduling, such overhead can often be avoided, how-

ever, as [18] demonstrates. Thus, we prefer the former schedule, which has less looping overhead

and requires less memory for buffering.

Our focus has been on creating a general framework for developing scheduling algorithms

that provably generate single appearance schedules when possible, and that incorporate other

scheduling objectives, such as the minimization of buffering requirements, in a manner that is

guaranteed not to interfere with code compaction goals. The framework modularizes different

parts of the scheduling process, and the compiler developer has freedom to experiment with the

component modules, while the framework guarantees that the interaction of the modules does not
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SDF graph that has three actors A, B, and C. Each arc is annotated with the number of samples

produced by its source actor and the number of samples consumed by its sink actor. The “D” on

the arc between B and C represents a unit delay, which can be viewed as an initial sample that is

queued on the arc. SDF and related models have been studied extensively in the context of synthe-

sizing assembly code for signal processing applications, for example [7, 8, 9, 10, 17, 18, 19, 20].

In SDF, iteration is defined as the repetition induced when the number of samples pro-

duced on an arc (per invocation of the source actor) does not match the number of samples con-

sumed (per sink invocation) [12]. For example, in figure 1, actor B must be invoked two times for

every invocation of A. Multirate applications often involve a large amount of iteration and thus

subroutine calls must be used extensively, code must be replicated, or loops must be organized in

the target program. The use of subroutine calls to implement repetition may reduce throughput

significantly however, particularly for graphs involving small granularity. On the other hand, we

have found that code duplication can quickly exhaust on-chip program memory [11]. As an alter-

native, we examine the problem of arranging loops in the target code.

In [11], How demonstrated that by clustering connected subgraphs that operate at the same

repetition-rate, and scheduling these consolidated subsystems each as a single unit, we can often

synthesize loops effectively. This technique was extended in [3] to cluster across repetition-rate

changes and to take into account the minimization of buffering requirements. Although these

techniques proved effective over a large range of applications, they do not always yield the most

compact schedule for an SDF graph [2].

In this paper we define a simple optimality criterion for the synthesis of compact loop-

structures from an SDF graph. The criterion is based on the looped schedule notation introduced

in [3], in which loops in a schedule are represented by parenthesized terms of the form (n M1 M2

… Mk), where n is a positive integer, and each Mi represents an SDF actor or another (nested)

A B C
2 1 1 1

D

Fig. 1. A simple SDF graph. Each arc is annotated with the number of samples produced by its
source and the number of samples consumed by its sink. The “D” designates a unit delay.
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ABSTRACT

The synchronous dataflow (SDF) programming paradigm has been used extensively in

design environments for multirate signal processing applications. In this paradigm, the repetition

of computations is specified by the relative rates at which the computations consume and produce

data. This implicit specification of iteration allows a compiler to easily explore alternative nested

loops structures for the target code with respect to their effects on code size, buffering require-

ments and throughput. In this paper, we develop important relationships between the SDF

description of an algorithm and the range of looping structures offered by this description, and we

discuss how to improve code efficiency by applying these relationships.

1 Introduction

Synchronous dataflow (SDF) is a restricted form of the dataflow model of computation

[5]. In the dataflow model, a program is represented as a directed graph. The nodes of the graph,

also called actors, represent computations and the arcs represent data paths between computa-

tions. In SDF [15], each node consumes a fixed number of data items, called tokens or samples,

per invocation and produces a fixed number of output samples per invocation. Figure 1 shows an
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